skip to content
Pax's Blog

最近的LeetCode刷题笔记

/ 19 min read

Updated:
Table of Contents

LeetCode刷题笔记

[7]整数反转

class Solution {
public int reverse(int x) {
int rev = 0;
while (x!=0){
if (rev < Integer.MIN_VALUE / 10 || rev > Integer.MAX_VALUE/10){
return 0;
}
int digit = x % 10;
x /= 10;
rev = rev * 10 + digit;
}
return rev;
}
}

[9]回文数

class Solution {
public boolean isPalindrome(int x) {
// 特殊情况:
// 如上所述,当 x < 0 时,x 不是回文数。
// 同样地,如果数字的最后一位是 0,为了使该数字为回文,
// 则其第一位数字也应该是 0
// 只有 0 满足这一属性
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int revertedNumber = 0;
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
// 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
// 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
// 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
return x == revertedNumber || x == revertedNumber / 10;
}
}

[14]最长公共前缀

class Solution {
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0){
return "";
}
String prefix = strs[0];
int count = strs.length;
for (int i = 1; i < count; i++) {
prefix = longestCommonPrefix(prefix, strs[i]);
if (prefix.length() == 0){
break;
}
}
return prefix;
}
public String longestCommonPrefix(String str1,String str2){
int length = Math.min(str1.length(), str2.length());
int index = 0;
while (index < length && str1.charAt(index) == str2.charAt(index)){
index++;
}
return str1.substring(0, index);
}
}

[20]有效的括号

class Solution {
public boolean isValid(String s) {
int n = s.length();
//偶数必错
if (n % 2 == 1) {
return false;
}
Map<Character, Character> pairs = new HashMap<Character, Character>() {{
put(')', '(');
put(']', '[');
put('}', '{');
}};
Deque<Character> stack = new LinkedList<Character>();
for (int i = 0; i < n; i++) {
char ch = s.charAt(i);
if (pairs.containsKey(ch)) {
if (stack.isEmpty() || stack.peek() != pairs.get(ch)) {
return false;
}
stack.pop();
} else {
stack.push(ch);
}
}
return stack.isEmpty();
}
}

[21]合并两个有序链表

class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
//使用带头结点的链表解决问题
//待输出链表的头部
ListNode head = new ListNode();
// 待输出链表的 last 结点
ListNode last = head;
while (l1 != null && l2 != null){
if (l1.val > l2.val){
last.next = l2;
l2 = l2.next;
}else {
last.next = l1;
l1 = l1.next;
}
last = last.next;
}
// l1 或 l2 可能还有剩余结点没有合并,
// 由于从上面的while循环中退出,那么链表 l1 和 l2 至少有一个已经遍历结束
if (l1 != null) last.next = l1;
if (l2 != null) last.next = l2;
return head.next;
}
}

[26]删除有序数组中的重复项

class Solution {
public int removeDuplicates(int[] nums) {
int n = nums.length;
if (n == 0){
return 0;
}
int fast = 1,slow = 1;
while (fast < n){
if (nums[fast] != nums[fast - 1]){
nums[slow] = nums[fast];
++ slow;
}
++fast;
}
return slow;
}
}

[53]最大子序和

class Solution {
public int maxSubArray(int[] nums) {
int ans = nums[0];
int sum = 0;
for (int num : nums) {
if (sum > 0) {
sum += num;
} else {
sum = num;
}
ans = Math.max(ans, sum);
}
return ans;
}
}

[70]爬楼梯

// 动态规划
class Solution {
public int climbStairs(int n) {
int p = 0, q = 0, r = 1;
// 倒着推 f(x) = f(x-1) + f(x-2)
for (int i = 0; i < n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
}

[88]合并两个有序数组

//方法一:直接合并后排序
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
for (int i = 0; i != n; ++i) {
nums1[m + i] = nums2[i];
}
Arrays.sort(nums1);
}
}
//方法二:双指针
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int p1 = 0, p2 = 0;
int[] sorted = new int[m + n];
int cur;
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
sorted[p1 + p2 - 1] = cur;
}
for (int i = 0; i != m + n; i++) {
nums1[i] = sorted[i];
}
}
}

[101]对称二叉树

// 方法一:递归
class Solution {
public boolean isSymmetric(TreeNode root) {
return check(root, root);
}
public boolean check(TreeNode p, TreeNode q) {
if (p == null && q == null) {
return true;
}
if (p == null || q == null) {
return false;
}
return p.val == q.val && check(p.left, q.right) && check(p.right, q.left);
}
}
// 迭代法
class Solution {
public boolean isSymmetric(TreeNode root) {
return check(root, root);
}
public boolean check(TreeNode u,TreeNode v){
Queue<TreeNode> q = new LinkedList<TreeNode>();
q.offer(u);
q.offer(v);
while (!q.isEmpty()){
u = q.poll();
v = q.poll();
if (u == null && v == null){
continue;
}
if (u == null || v == null || (u.val != v.val)){
return false;
}
q.offer(u.left);
q.offer(v.right);
q.offer(u.right);
q.offer(v.left);
}
return true;
}
}

[103]二叉树的锯齿形层序遍历

// 方法一: 层级遍历 双端队列
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> ans = new LinkedList<List<Integer>>();
if (root == null){
return ans;
}
Queue<TreeNode> nodeQueue = new LinkedList<TreeNode>();
nodeQueue.offer(root);
boolean isOrderLeft = true;
while (!nodeQueue.isEmpty()){
Deque<Integer> levelList = new LinkedList<>();
int size = nodeQueue.size();
for (int i = 0; i < size; i++) {
TreeNode curNode = nodeQueue.poll();
if (isOrderLeft){
levelList.offerLast(curNode.val);
}else {
levelList.offerFirst(curNode.val);
}
if (curNode.left != null){
nodeQueue.offer(curNode.left);
}
if (curNode.right != null){
nodeQueue.offer(curNode.right);
}
}
ans.add(new LinkedList<Integer>(levelList));
isOrderLeft = !isOrderLeft;
}
return ans;
}
}

复杂度分析

  • 时间复杂度:O(N),其中 N 为二叉树的节点数。每个节点会且仅会被遍历一次。
  • 空间复杂度:O(N)。我们需要维护存储节点的队列和存储节点值的双端队列,空间复杂度为 O(N)

[104]二叉树的最大深度

// 方法一:深度优先搜索 DFS
class Solution {
public int maxDepth(TreeNode root) {
if (root == null){
return 0;
}else {
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
//一直递归+1
return Math.max(leftHeight, rightHeight) + 1;
}
}
}
// 方法二:BFS
class Solution {
public int maxDepth(TreeNode root) {
if (root == null){
return 0;
}
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
int ans = 0;
while (!queue.isEmpty()){
int size = queue.size();
while (size>0){
TreeNode node = queue.poll();
if (node.left != null){
queue.offer(node.left);
}
//反复压栈
if (node.right != null){
queue.offer(node.right);
}
size --;
}//
//size = 0 时,最后+1
ans ++;
}
return ans;
}
}

[121]买卖股票的最佳时机

// 方法一:暴力破解 超时
class Solution {
public int maxProfit(int[] prices) {
int maxprofit = 0;
for (int i = 0; i < prices.length; i++) {
for (int j = i+1; j <prices.length ; j++) {
int profit = prices[j] - prices[i];
if (profit > maxprofit){
maxprofit = profit;
}
}
}
return maxprofit;
}
}
  • 时间复杂度:O(n^2)。循环运行 n(n-1)/2 次。
  • 空间复杂度:O(1)。只使用了常数个变量。

Integer.MAX_VALUE的含义

Integer.MAX_VALUE表示int数据类型的最大取值数:2 147 483 647 Integer.MIN_VALUE表示int数据类型的最小取值数:-2 147 483 648

对应: Short.MAX_VALUE 为short类型的最大取值数 32 767 Short.MIN_VALUE 为short类型的最小取值数 -32 768

Integer.MAX_VALUE+1=Integer.MIN_VALUE

// 方法二:一次遍历
class Solution {
public int maxProfit(int[] prices) {
int minprice = Integer.MAX_VALUE;
int maxprofit = 0;
//一次遍历 不会出现前面-后面而出现利润错误的情况
for (int i = 0; i < prices.length; i++) {
if (prices[i] < minprice){
minprice = prices[i];
}else if (prices[i] - minprice > maxprofit){
maxprofit = prices[i] - minprice;
}
}
return maxprofit;
}
}
  • 时间复杂度:O(n),只需要遍历一次。

  • 空间复杂度:O(1),只使用了常数个变量。

[141]环形链表

// 方法一:哈希表
public class Solution {
public boolean hasCycle(ListNode head) {
Set<ListNode> seen = new HashSet<ListNode>();
while (head != null){
//这一步应该是表示不能添加 则返回true
if (!seen.add(head)){
return true;
}
head = head.next;
}
return false;
}
}
  • 时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
  • 空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。
// 方法二:快慢指针
/*
具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。
*/
public class Solution {
public boolean hasCycle(ListNode head) {
if (head == null || head.next == null){
return false;
}
ListNode slow = head;
ListNode fast = head.next;
while (slow!=fast){
if (fast == null || fast.next == null){
return false;
}
slow = slow.next;
fast = fast.next.next;
}
return true;
}
}
  • 时间复杂度:O(N),其中 N 是链表中的节点数。
    • 当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。
    • 当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。
  • 空间复杂度:O(1)。我们只使用了两个指针的额外空间。

[155]最小栈

这道题没什么思路,基础太差的原因

class MinStack {
Deque<Integer> xStack;
Deque<Integer> minStack;
/** initialize your data structure here. */
public MinStack() {
xStack = new LinkedList<Integer>();
minStack = new LinkedList<Integer>();
minStack.push(Integer.MAX_VALUE);
}
public void push(int val) {
xStack.push(val);
minStack.push(Math.min(minStack.peek(),val));
}
public void pop() {
xStack.pop();
minStack.pop();
}
public int top() {
return xStack.peek();
}
public int getMin() {
return minStack.peek();
}
}

[169]多数元素

// 方法一:哈希表
class Solution {
private Map<Integer,Integer> countNums(int[] nums){
Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
for (int num : nums) {
if (!counts.containsKey(num)){
counts.put(num, 1);
}else {
counts.put(num, counts.get(num) + 1);
}
}
return counts;
}
public int majorityElement(int[] nums) {
Map<Integer, Integer> counts = countNums(nums);
Map.Entry<Integer,Integer> majorityEntry = null;
for (Map.Entry<Integer, Integer> entry : counts.entrySet()) {
if (majorityEntry == null || entry.getValue() > majorityEntry.getValue()){
majorityEntry = entry;
}
}
return majorityEntry.getKey();
}
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
// 方法二:排序
class Solution {
public int majorityElement(int[] nums) {
Arrays.sort(nums);
return nums[nums.length/2];
}
}
// 方法三:随机化
class Solution {
public int majorityElement(int[] nums) {
Random rand = new Random();
int majorityCount = nums.length / 2;
while (true){
int candidate = nums[randRange(rand,0,nums.length)];
if (countOccurences(nums,candidate) > majorityCount){
return candidate;
}
}
}
private int randRange(Random rand,int min,int max){
return rand.nextInt(max-min) + min;
}
private int countOccurences(int[] nums,int num){
int count = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == num){
count++;
}
}
return count;
}
}

由于一个给定的下标对应的数字很有可能是众数,我们随机挑选一个下标,检查它是否是众数,如果是就返回,否则继续随机挑选。

// 方法四:分治
class Solution {
public int majorityElement(int[] nums) {
return majorityElementRec(nums, 0, nums.length - 1);
}
private int countInRange(int[] nums, int num, int lo, int hi) {
int count = 0;
for (int i = 0; i < lo; i++) {
if (nums[i] == num) {
count++;
}
}
return count;
}
private int majorityElementRec(int[] nums, int lo, int hi) {
//base case; the only element in an array of size 1 is the majority element
if (lo == hi) {
return nums[lo];
}
//recurse on left and right halves of this slice
int mid = (hi - lo) / 2 + lo;
int left = majorityElementRec(nums, lo, mid);
int right = majorityElementRec(nums, mid + 1, hi);
//if the two halves agree on the majority element,return it
if (left == right) {
return left;
}
//otherwise,count each element and return the "winner"
int leftCount = countInRange(nums, left, lo, hi);
int rightCount = countInRange(nums, right, lo, hi);
return leftCount > rightCount ? left : right;
}
}

[206]反转链表

// 方法一:迭代
class Solution {
public ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode curr = head;
while (curr != null){
ListNode next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
return prev;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。需要遍历链表一次。
  • 空间复杂度:O(1)
// 方法二:递归
class Solution {
public ListNode reverseList(ListNode head) {
if (head == null || head.next == null){
return head;
}
ListNode newHead = reverseList(head.next);
head.next.next = head;
head.next = null;
return newHead;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。需要对链表的每个节点进行反转操作。
  • 空间复杂度:O(n),其中 n 是链表的长度。空间复杂度主要取决于递归调用的栈空间,最多为 n 层。

[226]翻转二叉树

// 方法一:递归
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null){
return null;
}
// 递归翻转
TreeNode left = invertTree(root.left);
TreeNode right = invertTree(root.right);
root.left = right;
root.right = left;
return root;
}
}

复杂度分析

  • 时间复杂度:O(N),其中 N 为二叉树节点的数目。我们会遍历二叉树中的每一个节点,对每个节点而言,我们在常数时间内交换其两棵子树。
  • 空间复杂度:O(N)。使用的空间由递归栈的深度决定,它等于当前节点在二叉树中的高度。在平均情况下,二叉树的高度与节点个数为对数关系,即 O(logN)。而在最坏情况下,树形成链状,空间复杂度为 O(N)

[234]回文链表

//方法一:将值复制到数组中后用双指针法
class Solution {
public boolean isPalindrome(ListNode head) {
List<Integer> vals = new ArrayList<Integer>();
// 将链表的值复制到数组中
ListNode currentNode = head;
while (currentNode != null){
vals.add(currentNode.val);
currentNode = currentNode.next;
}
//
int front = 0;
int back = vals.size() - 1;
while (front < back){
if (!vals.get(front).equals(vals.get(back))){
return false;
}
front++;
back--;
}
return true;
}
}
//方法二:递归
class Solution {
private ListNode frontPointer;
private boolean recursivelyCheck(ListNode currentNode){
if (currentNode!=null){
if (!recursivelyCheck(currentNode.next)){
return false;
}
if (currentNode.val != frontPointer.val){
return false;
}
frontPointer = frontPointer.next;
}
return true;
}
public boolean isPalindrome(ListNode head) {
frontPointer = head;
return recursivelyCheck(head);
}
}

[283]移动零

// 方法一:双指针
class Solution {
public void moveZeroes(int[] nums) {
int n = nums.length,left = 0,right = 0;
while (right < n){
if (nums[right] != 0){
swap(nums, left, right);
left++;
}
right++;
}
}
public void swap(int[] nums,int left,int right){
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 为序列长度。每个位置至多被遍历两次。
  • 空间复杂度:O(1)。只需要常数的空间存放若干变量。

[448]找到所有数组中消失的数字

class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
int n = nums.length;
for (int num : nums) {
// 取模 以免被增加过
int x = (num - 1) % n;
nums[x] += n;
}
List<Integer> ret = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (nums[i] <= n) {
ret.add(i + 1);
}
}
return ret;
}
}

[461]汉明距离

// 内置位计数功能
class Solution {
public int hammingDistance(int x, int y) {
return Integer.bitCount(x ^ y);
}
}
// 方法二:移位
class Solution {
public int hammingDistance(int x, int y) {
int xor = x ^ y;
int distance = 0;
while (xor != 0) {
if (xor % 2 == 1)
distance += 1;
xor = xor >> 1;
}
return distance;
}
}
//布赖恩·克尼根算法
class Solution {
public int hammingDistance(int x, int y) {
int xor = x ^ y;
int distance = 0;
while (xor != 0) {
distance += 1;
// remove the rightmost bit of '1'
xor = xor & (xor - 1);
}
return distance;
}
}

[543]二叉树的直径

class Solution {
int ans;
public int diameterOfBinaryTree(TreeNode root) {
ans = 1;
depth(root);
return ans - 1;
}
public int depth(TreeNode node) {
if (node == null) {
return 0;//访问了空节点,返回0
}
int L = depth(node.left);//左儿子为根的子树的深度
int R = depth(node.right);//右儿子为根的子树的深度
ans = Math.max(ans, L + R + 1);//计算d_node即L+R+1 并更新ans
return Math.max(L, R) + 1;//返回该节点为根的子树的深度
}
}

[617]合并二叉树

//方法一:深度优先搜索
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null){
return root2;
}
if (root2 == null){
return root1;
}
TreeNode merged = new TreeNode(root1.val+root2.val);
merged.left = mergeTrees(root1.left, root2.left);
merged.right = mergeTrees(root1.right, root2.right);
return merged;
}
}
//方法二:广度优先搜索
class Solution {
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null) {
return t2;
}
if (t2 == null) {
return t1;
}
TreeNode merged = new TreeNode(t1.val + t2.val);
Queue<TreeNode> queue = new LinkedList<TreeNode>();
Queue<TreeNode> queue1 = new LinkedList<TreeNode>();
Queue<TreeNode> queue2 = new LinkedList<TreeNode>();
queue.offer(merged);
queue1.offer(t1);
queue2.offer(t2);
while (!queue1.isEmpty() && !queue2.isEmpty()) {
TreeNode node = queue.poll(), node1 = queue1.poll(), node2 = queue2.poll();
TreeNode left1 = node1.left, left2 = node2.left, right1 = node1.right,right2 = node2.right;
if (left1 != null || left2 != null) {
if (left1 != null && left2 != null) {
TreeNode left = new TreeNode(left1.val + left2.val);
node.left = left;
queue.offer(left);
queue1.offer(left1);
queue2.offer(left2);
} else if (left1 != null) {
node.left = left1;
} else if (left2 != null) {
node.left = left2;
}
}
if (right1 != null || right2 != null) {
if (right1 != null && right2 != null) {
TreeNode right = new TreeNode(right1.val + right2.val);
node.right = right;
queue.offer(right);
queue1.offer(right1);
queue2.offer(right2);
} else if (right1 != null) {
node.right = right1;
} else if (right2 != null) {
node.right = right2;
}
}
}
return merged;
}
}